Artesunate ameliorates lung fibrosis via inhibiting the Notch signaling pathway

نویسندگان

  • Yujuan Liu
  • Guojin Huang
  • Biwen Mo
  • Changming Wang
چکیده

The present study aimed to determine the underlying molecular mechanism of the antifibrotic effect of artesunate in pulmonary fibrosis (PF). Primary lung fibroblasts were isolated from the lung tissues of rats, and treated with artesunate (8 µg/ml) and transforming growth factor (TGF)-β1 (5 ng/ml). For in vivo experiments, the rats were administered bleomycin intratracheally, followed by daily intraperitoneal artesunate injections for 27 days. Western blotting, and immunohistochemical and immunofluorescent staining were used to assess the expression of key components of the Notch signaling pathway, including α-smooth muscle actin (α-SMA) and type IV collagen. Artesunate (8 µg/ml) was identified to inhibit TGF-β1-induced α-SMA and collagen protein expression, and repress the Notch signaling pathway, in primary lung fibroblasts. Downregulation of α-SMA and collagen by artesunate was associated with inhibition of the Notch signaling pathway. The daily intraperitoneal injection of artesunate (1 mg/kg) in rats was determined to inhibit bleomycin-induced overexpression of α-SMA and type IV collagen proteins, and inhibit the Notch signaling pathway, in lung tissues. In conclusion, the results of the current study indicate that artesunate inhibits the TGF-β1-induced differentiation of rat primary lung fibroblasts into myofibroblasts and ameliorates bleomycin-induced PF. In addition, the results of the present study suggest that the underlying molecular mechanism for these effects of artesunate is repression of the Notch signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standardized Herbal PM014 Formula Ameliorates Pulmonary Fibrosis in COVID-19 Patients by Inhibiting the TGF-β1 Signaling Pathway

A number of studies have previously provided evidence on the Anti-inflammatory properties of plant-derived compounds that can prevent lung injury. In this study, we attempted to analyze the therapeutic effects of PM 014 on inflammation and pulmonary fibrosis in COVID-19 as well as describing the treatment of one of the most challenging problems related to the coronavirus-19 (COVID-19). We belie...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Dexamethasone suppresses bleomycin-induced pulmonary fibrosis via down-regulation of jagged1/notch1 signaling pathway

Dexamethasone (DEX) plays an important role in attenuating bleomycin (BLM)-induced lung fibrosis in mice. Recently, inhibition of Notch signaling is a potential therapeutic strategy for pulmonary fibrosis. To investigate whether dexamethasone exerts protective effect on BLM-induced pulmonary fibrosis via inhibiting the Notch signaling, BLM-induced rat model was used. All SD rats received daily ...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017